KSML: Kafka Streams for Low Code Environments
Abstract
Kafka Streams has captured the hearts and minds of many developers that want to develop streaming applications on top of Kafka. But as powerful as the framework is, Kafka Streams has had a hard time getting around the requirement of writing Java code and setting up build pipelines. There were some attempts to rebuild Kafka Streams, but up until now popular languages like Python did not receive equally powerful (and maintained) stream processing frameworks. In this article we will present a new declarative approach to unlock Kafka Streams, called KSML. By the time you finish reading this document, you will be able to write streaming applications yourself, using only a few simple basic rules and Python snippets.
Setting up a test environment
To demonstrate KSML’s capabilities, you will need a working Kafka cluster, or an Axual Platform/Cloud environment. Check
out the Runners page to configure KSML.
We set up a test topic, called ksml_sensordata_avro
with key/value types of String
/SensorData
. The [SensorData]
schema
was created for demo purposes only and contains several fields to demonstrate KSML capabilities:
{
"namespace": "io.axual.ksml.example",
"doc": "Emulated sensor data with a few additional attributes",
"name": "SensorData",
"type": "record",
"fields": [
{
"doc": "The name of the sensor",
"name": "name",
"type": "string"
},
{
"doc": "The timestamp of the sensor reading",
"name": "timestamp",
"type": "long"
},
{
"doc": "The value of the sensor, represented as string",
"name": "value",
"type": "string"
},
{
"doc": "The type of the sensor",
"name": "type",
"type": {
"name": "SensorType",
"type": "enum",
"doc": "The type of a sensor",
"symbols": [
"AREA",
"HUMIDITY",
"LENGTH",
"STATE",
"TEMPERATURE"
]
}
},
{
"doc": "The unit of the sensor",
"name": "unit",
"type": "string"
},
{
"doc": "The color of the sensor",
"name": "color",
"type": [
"null",
"string"
],
"default": null
},
{
"doc": "The city of the sensor",
"name": "city",
"type": [
"null",
"string"
],
"default": null
},
{
"doc": "The owner of the sensor",
"name": "owner",
"type": [
"null",
"string"
],
"default": null
}
]
}
For the rest of this document, we assume you have set up the ksml_sensordata_avro
topic and populated it with some
random data.
So without any further delays, let’s see how KSML allows us to process this data.
KSML in practice
Example 1. Inspect data on a topic
The first example is one where we inspect data on a specific topic. The definition is as follows:
streams:
sensor_source_avro:
topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
functions:
# Log the message using the built-in log variable that is passed in from Java
log_message:
type: forEach
parameters:
- name: format
type: string
code: log.info("Consumed {} message - key={}, value={}", format, key, value)
pipelines:
# Multiple pipelines can be created in a single KSML definition
consume_avro:
from: sensor_source_avro
forEach:
code: log_message(key, value, format="AVRO")
Let’s analyze this definition one element at a time. Before defining processing logic, we first define the streams used
by the definition. In this case we define a stream named sensor_source_avro
which reads from the
topic ksml_sensordata_avro
. The stream defines a string
key and Avro SensorData
values.
Next is a list of functions that can be used by the processing logic. Here we define just one, log_message
, which
simply uses the provided logger to write the key, value and format of a message to the console.
The third element pipelines
defines the real processing logic. We define a pipeline called consume_avro
, which takes
messages from ksml_sensordata_avro
and passes them to print_message
.
The definition file is parsed by KSML and translated into a Kafka Streams topology, which is described as follows:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> inspect_inspect_pipelines_consume_avro
Processor: inspect_inspect_pipelines_consume_avro (stores: [])
--> none
<-- ksml_sensordata_avro
And the output of the generated topology looks like this:
2024-03-06T18:31:57,196Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor9, value={'city': 'Alkmaar', 'color': 'yellow', 'name': 'sensor9', 'owner': 'Bob', 'timestamp': 1709749917190, 'type': 'LENGTH', 'unit': 'm', 'value': '562', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:57,631Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor3, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor3', 'owner': 'Bob', 'timestamp': 1709749917628, 'type': 'HUMIDITY', 'unit': 'g/m3', 'value': '23', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,082Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor6, value={'city': 'Amsterdam', 'color': 'white', 'name': 'sensor6', 'owner': 'Bob', 'timestamp': 1709749918078, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '64', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,528Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor9, value={'city': 'Amsterdam', 'color': 'black', 'name': 'sensor9', 'owner': 'Evan', 'timestamp': 1709749918524, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '87', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,970Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor1, value={'city': 'Amsterdam', 'color': 'black', 'name': 'sensor1', 'owner': 'Bob', 'timestamp': 1709749918964, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '75', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:59,412Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor5, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor5', 'owner': 'Bob', 'timestamp': 1709749919409, 'type': 'LENGTH', 'unit': 'm', 'value': '658', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
As you can see, the output of the application is exactly that what we defined it to be in the log_message
function,
namely a dump of all data found on the topic.
Example 2. Copying data to another topic
Now that we can see what data is on a topic, we will start to manipulate its routing. In this example we are copying unmodified data to a secondary topic:
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_copy
keyType: string
valueType: avro:SensorData
functions:
# Log the message using the built-in log variable that is passed in from Java
log_message:
type: forEach
parameters:
- name: format
type: string
code: log.info("Consumed {} message - key={}, value={}", format, key, value)
pipelines:
# Every pipeline logs its own message, passing in the format parameter to log_message above
consume_avro:
from: sensor_source_avro
via:
- type: peek
forEach:
code: log_message(key, value, format="AVRO")
to: sensor_copy
You can see that we specified a second stream named sensor_copy
in this example, which is backed by the
topic ksml_sensordata_copy
target topic. The log_message
function is unchanged, but the pipeline did undergo some
changes. Two new elements are introduced here, namely via
and to
.
The via
tag allows users to define a series of operations executed on the data. In this case there is only one, namely
a peek
operation which does not modify any data, but simply outputs the data on stdout as a side effect.
The to
operation is a so-called “sink operation”. Sink operations are always last in a pipeline. Processing of the
pipeline does not continue after it was delivered to a sink operation. Note that in the first example above forEach
is
also a sink operation, whereas in this example we achieve the same result by passing the log_message
function as a
parameter to the peek
operation.
When this definition is translated by KSML, the following Kafka Streams topology is created:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> inspect_inspect_pipelines_consume_avro_via_1
Processor: inspect_inspect_pipelines_consume_avro_via_1 (stores: [])
--> inspect_inspect_ToOperationParser_001
<-- ksml_sensordata_avro
Sink: inspect_inspect_ToOperationParser_001 (topic: ksml_sensordata_copy)
<-- inspect_inspect_pipelines_consume_avro_via_1
The output is similar to that of example 1, but the same data can also be found on the ksml_sensordata_copy
topic now.
Example 3. Filtering data
Now that we can read and write data, let’s see if we can apply some logic to the processing as well. In this example we will be filtering data based on the contents of the value:
# This example shows how to read from four simple streams and log all messages
streams:
sensor_source_avro:
topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
sensor_filtered:
topic: ksml_sensordata_filtered
keyType: string
valueType: avro:SensorData
functions:
# Log the message using the built-in log variable that is passed in from Java
log_message:
type: forEach
parameters:
- name: format
type: string
code: log.info("Consumed {} message - key={}, value={}", format, key, value)
sensor_is_blue:
type: predicate
code: |
if value["color"] == "blue":
return True
expression: False
pipelines:
# Every pipeline logs its own message, passing in the format parameter to log_message above
consume_avro:
from: sensor_source_avro
via:
- type: filter
if: sensor_is_blue
- type: peek
forEach:
code: log_message(key, value, format="AVRO")
to: sensor_filtered
Again, first we define the streams and the functions involved in the processing. You can see we added a new function
called filter_message
which returns true
or false
based on the color
field in the value of the message. This
function is used below in the pipeline.
The pipeline is extended to include a filter
operation, which takes a predicate
function as parameter. That function
is called for every input message. Only messages for which the function returns true
are propagated. All other
messages are discarded.
Using this definition, KSML generates the following Kafka Streams topology:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> inspect_inspect_pipelines_consume_avro_via_1
Processor: inspect_inspect_pipelines_consume_avro_via_1 (stores: [])
--> inspect_inspect_pipelines_consume_avro_via_2
<-- ksml_sensordata_avro
Processor: inspect_inspect_pipelines_consume_avro_via_2 (stores: [])
--> inspect_inspect_ToOperationParser_001
<-- inspect_inspect_pipelines_consume_avro_via_1
Sink: inspect_inspect_ToOperationParser_001 (topic: ksml_sensordata_filtered)
<-- inspect_inspect_pipelines_consume_avro_via_2
When it executes, we see the following output:
2024-03-06T18:45:10,401Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor9, value={'city': 'Alkmaar', 'color': 'blue', 'name': 'sensor9', 'owner': 'Bob', 'timestamp': 1709749917190, 'type': 'LENGTH', 'unit': 'm', 'value': '562', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:45:10,735Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor3, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor3', 'owner': 'Bob', 'timestamp': 1709749917628, 'type': 'HUMIDITY', 'unit': 'g/m3', 'value': '23', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:45:11,215Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor6, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor6', 'owner': 'Bob', 'timestamp': 1709749918078, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '64', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:45:11,484Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor9, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor9', 'owner': 'Evan', 'timestamp': 1709749918524, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '87', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:45:11,893Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor1, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor1', 'owner': 'Bob', 'timestamp': 1709749918964, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '75', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:45:12,008Z INFO ksml.functions.log_message Consumed AVRO message - key=sensor5, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor5', 'owner': 'Bob', 'timestamp': 1709749919409, 'type': 'LENGTH', 'unit': 'm', 'value': '658', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
As you can see, the filter operation did its work. Only messages with field color
set to blue
are passed on to
the peek
operation, while other messages are discarded.
Example 4. Branching messages
Another way to filter messages is to use a branch
operation. This is also a sink operation, which closes the
processing of a pipeline. It is similar to forEach
and to
in that respect, but has a different definition and
behaviour.
streams:
sensor_source:
topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
sensor_blue:
topic: ksml_sensordata_blue
keyType: string
valueType: avro:SensorData
sensor_red:
topic: ksml_sensordata_red
keyType: string
valueType: avro:SensorData
pipelines:
main:
from: sensor_source
via:
- type: peek
forEach:
code: log.info("SOURCE MESSAGE - key={}, value={}", key, value)
branch:
- if:
expression: value is not None and value["color"] == "blue"
to: sensor_blue
- if:
expression: value is not None and value["color"] == "red"
to: sensor_red
- forEach:
code: log.warn("UNKNOWN COLOR - {}", value["color"])
The branch
operation takes a list of branches as its parameters, which each specifies a processing pipeline of its
own. Branches contain the keyword if
, which take a predicate function that determines if a message will flow into that
particular branch, or if it will be passed to the next branch(es). Every message will only end up in one branch, namely
the first one in order where the if
predicate function returns true
.
In the example we see that the first branch will be populated only with messages with color
field set to blue
. Once
there, these messages will be written to ksml_sensordata_blue
. The second branch will only contain messages
with color
=red
and these messages will be written to ksml_sensordata_red
. Finally, the last branch outputs a
message that the color is unknown and ends any further processing.
When translated by KSML the following Kafka Streams topology is set up:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> branch_branch_pipelines_main_via_1
Processor: branch_branch_pipelines_main_via_1 (stores: [])
--> branch_branch_branch_001
<-- ksml_sensordata_avro
Processor: branch_branch_branch_001 (stores: [])
--> branch_branch_branch_001-predicate-0, branch_branch_branch_001-predicate-1, branch_branch_branch_001-predicate-2
<-- branch_branch_pipelines_main_via_1
Processor: branch_branch_branch_001-predicate-0 (stores: [])
--> branch_branch_ToOperationParser_001
<-- branch_branch_branch_001
Processor: branch_branch_branch_001-predicate-1 (stores: [])
--> branch_branch_ToOperationParser_002
<-- branch_branch_branch_001
Processor: branch_branch_branch_001-predicate-2 (stores: [])
--> branch_branch_pipelines_main_branch_3
<-- branch_branch_branch_001
Sink: branch_branch_ToOperationParser_001 (topic: ksml_sensordata_blue)
<-- branch_branch_branch_001-predicate-0
Sink: branch_branch_ToOperationParser_002 (topic: ksml_sensordata_red)
<-- branch_branch_branch_001-predicate-1
Processor: branch_branch_pipelines_main_branch_3 (stores: [])
--> none
<-- branch_branch_branch_001-predicate-2
It is clear that the branch operation is integrated in this topology. Its output looks like this:
2024-03-06T18:31:57,196Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor9, value={'city': 'Alkmaar', 'color': 'yellow', 'name': 'sensor9', 'owner': 'Bob', 'timestamp': 1709749917190, 'type': 'LENGTH', 'unit': 'm', 'value': '562', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:57,631Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor3, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor3', 'owner': 'Bob', 'timestamp': 1709749917628, 'type': 'HUMIDITY', 'unit': 'g/m3', 'value': '23', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,082Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor6, value={'city': 'Amsterdam', 'color': 'white', 'name': 'sensor6', 'owner': 'Bob', 'timestamp': 1709749918078, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '64', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,528Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor9, value={'city': 'Amsterdam', 'color': 'black', 'name': 'sensor9', 'owner': 'Evan', 'timestamp': 1709749918524, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '87', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,529Z WARN k.f.branch_pipelines_main_branch_3_forEach UNKNOWN COLOR - black
2024-03-06T18:31:58,970Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor1, value={'city': 'Amsterdam', 'color': 'black', 'name': 'sensor1', 'owner': 'Bob', 'timestamp': 1709749918964, 'type': 'TEMPERATURE', 'unit': 'F', 'value': '75', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T18:31:58,972Z WARN k.f.branch_pipelines_main_branch_3_forEach UNKNOWN COLOR - black
2024-03-06T18:31:59,412Z INFO k.f.branch_pipelines_main_via_1_forEach SOURCE MESSAGE - key=sensor5, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor5', 'owner': 'Bob', 'timestamp': 1709749919409, 'type': 'LENGTH', 'unit': 'm', 'value': '658', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
We see that every message processed by the pipeline is logged through the k.f.branch_pipelines_main_via_1_forEach
logger. But the branch operation sorts the messages and sends messages with colors blue
and red
into their own
branches. The only colors that show up as UNKNOWN COLOR -
messages are non-blue and non-red and send through
the branch_pipelines_main_branch_3_forEach
logger.
Example 5. Dynamic routing
Sometimes it is necessary to route a message to one stream or another based on the content of a message. This example shows how to route messages dynamically using a TopicNameExtractor.
streams:
sensor_source:
topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
pipelines:
main:
from: sensor_source
via:
- type: peek
forEach:
code: log.info("SOURCE MESSAGE - key={}, value={}", key, value)
to:
topicNameExtractor:
code: |
if key == 'sensor1':
return 'ksml_sensordata_sensor1'
if key == 'sensor2':
return 'ksml_sensordata_sensor2'
return 'ksml_sensordata_sensor0'
The topicNameExtractor
operation takes a function, which determines the routing of every message by returning a topic
name string. In this case, when the key of a message is sensor1
then the message will be sent
to ksml_sensordata_sensor1
. When it contains sensor2
the message is sent to ksml_sensordata_sensor2
. All other
messages are sent to ksml_sensordata_sensor0
.
The equivalent Kafka Streams topology looks like this:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> route_route_pipelines_main_via_1
Processor: route_route_pipelines_main_via_1 (stores: [])
--> route_route_ToOperationParser_001
<-- ksml_sensordata_avro
Sink: route_route_ToOperationParser_001 (extractor class: io.axual.ksml.user.UserTopicNameExtractor@5d28e108)
<-- route_route_pipelines_main_via_1
The output does not show anything special compared to previous examples, since all messages are simply written by the logger.
Example 6. Multiple pipelines
In the previous examples there was always a single pipeline definition for processing data. KSML allows us to define multiple pipelines in a single file.
In this example we combine the filtering example with the routing example. We will also define new pipelines with the sole purpose of logging the routed messages.
# This example shows how to route messages to a dynamic topic. The target topic is the result of an executed function.
streams:
sensor_source_avro:
topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
sensor_filtered:
topic: ksml_sensordata_filtered
keyType: string
valueType: avro:SensorData
sensor_0:
topic: ksml_sensordata_sensor0
keyType: string
valueType: avro:SensorData
sensor_1:
topic: ksml_sensordata_sensor1
keyType: string
valueType: avro:SensorData
sensor_2:
topic: ksml_sensordata_sensor2
keyType: string
valueType: avro:SensorData
functions:
# Only pass the message to the next step in the pipeline if the color is blue
sensor_is_blue:
type: predicate
code: |
if value["color"] == "blue":
return True
expression: False
pipelines:
filtering:
from: sensor_source_avro
via:
- type: filter
if: sensor_is_blue
to: sensor_filtered
routing:
from: sensor_filtered
via:
- type: peek
forEach:
code: log.info("Routing Blue sensor - key={}, value={}", key, value)
to:
topicNameExtractor:
code: |
if key == 'sensor1':
return 'ksml_sensordata_sensor1'
if key == 'sensor2':
return 'ksml_sensordata_sensor2'
return 'ksml_sensordata_sensor0'
sensor0_peek:
from: sensor_0
forEach:
code: log.info("SENSOR0 - key={}, value={}", key, value)
sensor1_peek:
from: sensor_1
forEach:
code: log.info("SENSOR1 - key={}, value={}", key, value)
sensor2_peek:
from: sensor_2
forEach:
code: log.info("SENSOR2 - key={}, value={}", key, value)
In this definition we defined five pipelines:
filtering
which filters out all sensor messages that don’t have the color blue and sends it to thesensor_filtered
stream.routing
which routes the data on thesensor_filtered
stream to one of three target topicssensor0_peek
which writes the content of thesensor_0
stream to the consolesensor1_peek
which writes the content of thesensor_1
stream to the consolesensor2_peek
which writes the content of thesensor_2
stream to the console
The equivalent Kafka Streams topology looks like this:
Topologies:
Sub-topology: 0
Source: ksml_sensordata_avro (topics: [ksml_sensordata_avro])
--> multiple_multiple_pipelines_filtering_via_1
Processor: multiple_multiple_pipelines_filtering_via_1 (stores: [])
--> multiple_multiple_ToOperationParser_001
<-- ksml_sensordata_avro
Sink: multiple_multiple_ToOperationParser_001 (topic: ksml_sensordata_filtered)
<-- multiple_multiple_pipelines_filtering_via_1
Sub-topology: 1
Source: ksml_sensordata_filtered (topics: [ksml_sensordata_filtered])
--> multiple_multiple_pipelines_routing_via_1
Processor: multiple_multiple_pipelines_routing_via_1 (stores: [])
--> multiple_multiple_ToOperationParser_002
<-- ksml_sensordata_filtered
Sink: multiple_multiple_ToOperationParser_002 (extractor class: io.axual.ksml.user.UserTopicNameExtractor@2700f556)
<-- multiple_multiple_pipelines_routing_via_1
Sub-topology: 2
Source: ksml_sensordata_sensor0 (topics: [ksml_sensordata_sensor0])
--> multiple_multiple_pipelines_sensor0_peek
Processor: multiple_multiple_pipelines_sensor0_peek (stores: [])
--> none
<-- ksml_sensordata_sensor0
Sub-topology: 3
Source: ksml_sensordata_sensor1 (topics: [ksml_sensordata_sensor1])
--> multiple_multiple_pipelines_sensor1_peek
Processor: multiple_multiple_pipelines_sensor1_peek (stores: [])
--> none
<-- ksml_sensordata_sensor1
Sub-topology: 4
Source: ksml_sensordata_sensor2 (topics: [ksml_sensordata_sensor2])
--> multiple_multiple_pipelines_sensor2_peek
Processor: multiple_multiple_pipelines_sensor2_peek (stores: [])
--> none
<-- ksml_sensordata_sensor2
And this is what the output would look something like this. The sensor peeks messages will not always be shown immediately after the Routing messages. This is because the pipelines are running in separate sub processes.
2024-03-06T20:11:39,520Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor6, value={'city': 'Utrecht', 'color': 'blue', 'name': 'sensor6', 'owner': 'Charlie', 'timestamp': 1709755877401, 'type': 'LENGTH', 'unit': 'ft', 'value': '507', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,523Z INFO k.f.route2_pipelines_sensor0_peek_forEach SENSOR0 - key=sensor6, value={'city': 'Utrecht', 'color': 'blue', 'name': 'sensor6', 'owner': 'Charlie', 'timestamp': 1709755877401, 'type': 'LENGTH', 'unit': 'ft', 'value': '507', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,533Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor1, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor1', 'owner': 'Evan', 'timestamp': 1709755889834, 'type': 'LENGTH', 'unit': 'm', 'value': '609', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,535Z INFO k.f.route2_pipelines_sensor1_peek_forEach SENSOR1 - key=sensor1, value={'city': 'Xanten', 'color': 'blue', 'name': 'sensor1', 'owner': 'Evan', 'timestamp': 1709755817913, 'type': 'STATE', 'unit': 'state', 'value': 'on', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,539Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor7, value={'city': 'Utrecht', 'color': 'blue', 'name': 'sensor7', 'owner': 'Evan', 'timestamp': 1709755892051, 'type': 'HUMIDITY', 'unit': '%', 'value': '77', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,5419Z INFO k.f.route2_pipelines_sensor0_peek_forEach SENSOR0 - key=sensor7, value={'city': 'Utrecht', 'color': 'blue', 'name': 'sensor7', 'owner': 'Evan', 'timestamp': 1709755892051, 'type': 'HUMIDITY', 'unit': '%', 'value': '77', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,546Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor2, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor2', 'owner': 'Bob', 'timestamp': 1709755893390, 'type': 'HUMIDITY', 'unit': '%', 'value': '75', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,549Z INFO k.f.route2_pipelines_sensor1_peek_forEach SENSOR2 - key=sensor2, value={'city': 'Amsterdam', 'color': 'blue', 'name': 'sensor2', 'owner': 'Bob', 'timestamp': 1709755893390, 'type': 'HUMIDITY', 'unit': '%', 'value': '75', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,552Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor1, value={'city': 'Xanten', 'color': 'blue', 'name': 'sensor1', 'owner': 'Bob', 'timestamp': 1709755894717, 'type': 'HUMIDITY', 'unit': '%', 'value': '76', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,555Z INFO k.f.route2_pipelines_sensor1_peek_forEach SENSOR1 - key=sensor1, value={'city': 'Xanten', 'color': 'blue', 'name': 'sensor1', 'owner': 'Bob', 'timestamp': 1709755894717, 'type': 'HUMIDITY', 'unit': '%', 'value': '76', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,558Z INFO k.f.route2_pipelines_routing_via_1_forEach Routing Blue sensor - key=sensor9, value={'city': 'Alkmaar', 'color': 'blue', 'name': 'sensor9', 'owner': 'Alice', 'timestamp': 1709755896937, 'type': 'HUMIDITY', 'unit': '%', 'value': '65', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}
2024-03-06T20:11:39,562Z INFO k.f.route2_pipelines_sensor0_peek_forEach SENSOR0 - key=sensor9, value={'city': 'Alkmaar', 'color': 'blue', 'name': 'sensor9', 'owner': 'Alice', 'timestamp': 1709755896937, 'type': 'HUMIDITY', 'unit': '%', 'value': '65', '@type': 'SensorData', '@schema': { <<Cleaned KSML Representation of Avro Schema>>}}